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EVOLUTION OF THE SHAPE OF THE ANODE BOUNDARY

UNDER ELECTROCHEMICAL DIMENSIONAL MACHINING OF METALS

UDC 621.9.047L. M. Kotlyar and N. M. Minazetdinov

This paper presents a method for calculating the anode boundary under unsteady conditions of elec-
trochemical dimensional machining of metals. The plane quasistationary problem of determining the
shape of the anode boundary for various machining times is considered.
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Introduction. In the electrochemical machining process, one can distinguish an initial unsteady stage of
machining [1]. In this case, the distribution of the metal dissolution velocity over the machined surface and the
local interelectrode distances vary in time. The configuration of the machined surface varies, tending to a certain
asymptotic shape similar to the shape of the tool (cathode). In the present paper, we propose a mathematical
model and a method for calculating the anode boundary in the initial stage of machining.

Model of the Process. The plane problem of electrochemical dimensional machining of metals under
unsteady conditions is considered. Rectangular coordinates x1 and y1 are attached to the cathode (Fig. 1). It is
assumed that the cathode moves in the negative direction of the ordinate.

The description of shape changes of a machined surface under unsteady conditions involves an evolutionary
problem with a moving boundary and a nonstationary distribution of parameters. This problem is solved using a
method in which the solution is found sequentially in particular time intervals reckoned from the initial specified
state. The problem is formulated within the framework of an ideal process model. The main assumptions of the
model and their detailed substantiation are given in [1]. According to this model, in the case of a direct current, the
electric field in the interelectrode gap can be considered potential; i.e., E = − gradu, where E is the electric-field
intensity vector and u is the electric field potential. In the ideal process, the electric field can be described by the
Laplace equation ∇2u = 0. The potentials ua and uc on the anode and cathode surfaces (Γa and Γc, respectively)
are constant [1].

The linear velocity Va of anode dissolution along the normal to the anode surface is given by the formula
(see [1])

Va = η(ia)εia/ρ, (1)
where ia = æ ∂u/∂na is the anode current density, æ is the specific electric conductivity of the medium, ε is the
electrochemical equivalent of the metal, ρ is the density of the anode material, and na is the outward normal vector
to the anode (Fig. 1). The current efficiency η depends on various process parameters, mainly on the anionic
composition and concentration of the electrolyte, the chemical composition and hardness of the metal, and the
current density. Condition (1) takes into account that η is a function of the current density.

The curves of current efficiency versus anode current density for machining of 5KhNM steel in NaCl and
NaNO3 solutions of various concentration obtained in the experiments of [2] are presented in [3]. By approximation
of the experimental data and using expression (1), we obtain

Va =
ε

ρ
(a1 + a0ia) =

ε

ρ

(
a1 + a0æ

∂u

∂na

)
,
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Fig. 1. Coordinate system of the surface boundaries of the anode and cathode.

where a0 and a1 are the constant approximation coefficients for the curve of current efficiency versus anode current
density [3].

We introduce the characteristic current density i0 = ρVc/ε (Vc is the feed velocity of the cathode) and the
characteristic length H = æ(ua − uc)/i0 [3] and convert to the dimensionless variable

ψ = (u− uc)/(ua − uc), x = x1/H, y = y1/H, n = na/H.

Then,

Va =
ε

ρ
a1 +

εæ(ua − uc)
ρH

∂ψ

∂n
=
ε

ρ
a1 + a0Vc

∂ψ

∂n
= Vc

(a1

i0
+ a0

∂ψ

∂n

)
. (2)

The function ψ corresponding to the electric-field potential satisfies the Laplace equation in the interelectrode
gap:

∇2ψ = 0.

On the boundaries of the electrodes, the following conditions are satisfied:

ψa = 1, ψc = 0.

On the electrically insulated surfaces, the following condition is satisfied:

∂ψ

∂n
= 0.

It is known that in the machining process, it is possible to distinguish unsteady and steady-state stages [1].
In the latter case, metal dissolution occurs with a velocity distribution that ensures parallel motion of points of the
anode at a velocity equal to the cathode feed velocity. Under unsteady conditions,

Va = Vc cos θ, (3)

where θ is the angle between the cathode feed velocity Vc and the na normal vector to the anode (see Fig. 1).
Using (2) and (3), we find that at points of the steady-stated anode boundary, the following condition should be
satisfied:

a1

i0
+ a0

∂ψ

∂n
= cos θ. (4)

In the formulation and solution of problems of electrochemical dimensional machining of metals, it is common
to use a hydrodynamic analogy of an electric field, according to which a plane potential field is replaced by a dummy
flow of an ideal incompressible fluid. The hydrodynamic analogy facilitates the formulation of boundary-value
problems in theory and allows the use of computational methods developed in solving hydrodynamic problem [1].

Formulation of the Problem. We consider the plane problem of electrochemical machining using a
cathode tool consisting of straight-line segments and a semicircular cylindrical lobe of radius R (Fig. 2). The vector
Vc indicates the direction of cathode feed. The initial position of the anode boundary Γ1 is specified arbitrarily.
We assume that at the initial time, the anode boundary is a straight line parallel to the abscissa. In the numerical

462



x

yVc

G1

G3

G4 G2 n

S

Vc i+1

i_1

i

Fig. 2 Fig. 3

Fig. 2. Computed geometry of the device.

Fig. 3. Diagram of computation nodes.

calculation, the dummy inflow and outflow are cut off at right angles to the initial velocity direction at certain
distances from the lobe. The cutoff lines correspond to the inflow (Γ2) and outflow (Γ4) regions.

The problem reduces to solving the Laplace equation for the dimensionless potential ψ of the electric fields
in the region bounded by the cathode boundary Γ3, the cutoff lines Γ2 and Γ4, and the anode boundary Γ1.

On the boundaries of the region, the function ψ satisfies the following conditions: ψ = 1 on the boundary Γ1,
ψ = 0 on the boundary Γ3, and ∂ψ/∂n = 0 on the cutoff lines Γ2 and Γ4. The latter condition indicates the absence
of a velocity component normal to the principal direction of the dummy flow.

During the solution of the problem, it is required to determine the position of the anode boundary Γ1 at
various times until condition (4) is satisfied on the anode boundary.

Algorithm of Finding the Anode Boundary. The problem is solved using the boundary element
method [4] with a linear variation in the functions ψ and ∂ψ/∂n on the element. During the calculations, it is
necessary to check that at points of the anode boundary the value of ∆ = |a1/i0 + a0 ∂ψ/∂n − cos θ| decreases at
each subsequent time. Otherwise, as shown by calculations, there is instability of the solution.

The problem is solved by the following scheme.
1. The anode boundary is considered known for the kth time.
2. The boundary-value problem is solved, and discrete values of (∂ψ/∂n)i are determined at the nodes of

the anode boundary.
3. The displacements of points of the anode are determined as the sum of the vectors of displacements due

to dissolution (∆na = Va∆t) and cathode feed (∆S = −Vc∆t); here ∆t is the time interval. In this case, a problem
arises to represent the normals to the corner points with adequate accuracy. In this study, according to the scheme
given in Fig. 3, it is assumed that the normal to the ith nodal point is perpendicular to the segment connecting the
nodes adjacent to the ith nodal point. If we introduce the dimensionless time τ = Vct/H, the projections of the
displacement of the nodal points of the anode boundary on the x and y axes, according to (2), can be defined by
the following difference formulas:

∆xi =
yi+1 − yi−1

li

(a1

i0
+ a0

(∂ψ
∂n

)
i

)
∆τ, ∆yi =

(
1− xi+1 − xi−1

li

(a1

i0
+ a0

(∂ψ
∂n

)
i

))
∆τ.

Here li =
√

(xi+1 − xi−1)2 + (yi+1 − yi−1)2, xi and yi (i = 2, n− 1) are the node coordinates and n is the number
of nodes on the anode boundary.

4. The position of the anode boundary for the following (k + 1)th time is defined by the formulas

x
(k+1)
i = x

(k)
i + ∆xi, y

(k+1)
i = y

(k)
i + ∆yi.

The process is then continued for the next time.
In the numerical solution of the problem for the (k+1)th time, the value of ∆k+1 = max

i
|a1/i0+a0(∂ψ/∂n)i−

(cos θ)i| at the nodes of the anode boundary is calculated. If ∆k+1 > ∆k, the value of ∆τ decreases by a factor of
two and the coordinates of points of the anode boundary are recalculated with a new step ∆τ .

Results of Numerical Experiments. The calculations were performed for the following conditions. The
radius of the cylindrical lobe was R = 1.0, the initial position of the anode corresponded to the straight line y = −h
(h > 0), the characteristic current density was i0 = 100 A/cm2, and the coefficients a0 = 0.906 and a1 = −12.817
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Fig. 4. Calculated anode boundaries at h = 1.2 and τ = 0.4062 (1), 0.5938 (2),
1.2188 (3), and 3.4188 (4).
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Fig. 5. Calculated anode boundaries at h = 2.0 and τ = 0.7375 (1), 1.0500 (2),
1.3625 (3), 1.6750 (4), 1.9877 (5), 2.300 (6), and 4.8033 (7).

corresponded to 5KhNM steel in a 15% solution of NaNO3. The boundary of the region was discretized using linear
elements.

Numerical implementation of the method involves at least three problems: the choice of the sections Γ2

and Γ4, the choice of a step in time, and the choice of a criterion for the termination of the calculation.
To determine the effect of the choice of the boundaries of the sections Γ2 and Γ4, we performed calculations of

the points of the anode boundary for the same times and different lengths of the interelectrode gap along the x axis
equal to 10, 12, and 16. The calculation results for the common segments of the indicated gaps almost coincided;
therefore, in the further study, the calculation results were considered for a gap of [−6; 6]. In this case, the boundary
of the region was divided into 150 linear elements, and the anode boundary into 75 elements. The nodal points
immediately under the cylindrical lobe were made finer to increase the calculation accuracy.

The step in time was selected so as to increase the accuracy of satisfaction of relation (4) for the next time.
If this condition was not satisfied, the step in time was decreased.

In the calculations for the specified conditions, it was assumed that the initial step in time ∆τ = 0.1. After
the first nine steps, the step in time, being sequentially decreased, became equal to 0.00625. This value of the step
in time was not changed until condition (4) was satisfied on the anode boundary with a certain accuracy ε; after
that, the value of ∆τ decreased rapidly and almost vanished and the shape of the anode boundary ceased to change.

From the aforesaid it is clear that for the termination of the calculation, one can require satisfaction of
condition (4) with required accuracy ε or to specify the minimum value of ∆τ upon reaching which the shape of
the anode boundary practically does not change.

Figures 4 and 5 show the calculation results for two initial positions of the anode at h = 1.2 and 2.0,
respectively.
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The anode boundaries corresponding to the steady-state conditions are shown in Fig. 4 (curve 4) and Fig. 5
(curve 7). The value of ∆ = |a1/i0 + a0 ∂ψ/∂n − cos θ| varies along the anode boundary from 0.0003 at a node
located on the symmetry axis to 0.0091 in the neighborhood of the sections Γ2 and Γ4.

The results obtained for the steady-state anode boundary coincide with the calculation results for the sta-
tionary anode boundary given in [3].

Thus, in this study, we implemented the two-dimensional mathematical model proposed in [1, 3] for the
initial stage of the ideal process of electrochemical dimensional machining of metals. Anode-boundary shapes for
various machining times were obtained for the same cathode configuration. The calculations results show that the
anode boundary takes a steady-state shape with time.
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